Production Features
ApiTap includes built-in safeguards for production environments: Schema Validation, Audit Trails, and Dead Letter Queues (DLQ).
Goal: These features ensure data quality and lineage without requiring external tools.
Schema Validation
Enforce data structure at source
Audit Metadata
Automatic lineage tracking
Dead Letter Queue
Never lose failed records
1. Schema Validation
Enforce Data Structure
Fail or warn when API structure changes unexpectedly
How to Enable
Add schema_validation to your source config:
yaml
sources:
critical_api:
url: https://api.example.com
schema_validation:
fail_on_mismatch: true # Stop pipeline on error
required_fields:
- "id"
- "email"
field_types:
id: "Number"
email: "String"
active: "Boolean"2. Audit Metadata
Automatic Lineage Tracking
ApiTap appends metadata columns to every inserted row
How to Enable
yaml
targets:
- name: warehouse
type: postgres
audit:
enabled: true
prefix: "_meta" # Optional, default is _apitapAdded Columns
| Column | Type | Description |
|---|---|---|
_meta_run_id | UUID | Unique ID for the pipeline run |
_meta_ingested_at | Timestamp | UTC time of insertion |
_meta_source | String | Source name (e.g., "critical_api") |
3. Dead Letter Queue (DLQ)
Never Lose Data on Failures
Failed records are saved to a separate table for review
How to Enable
yaml
targets:
- name: warehouse
type: postgres
dlq:
enabled: true
table_suffix: "_errors" # Saves to {table_name}_errorsDLQ Table Schema
- •original_record: The raw JSON that failed
- •error_message: Why it failed
- •failed_at: Timestamp
